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EXECUTIVE SUMMARY 

Cross slope, the transverse slope with respect to the horizon, is a critical geometric feature of 

pavement surfaces as it affects safety due to its relationship to the potential of hydroplaning during 

wet weather. Appropriate cross slopes provide adequate drainage so water will run off the surface 

to a drainage system such as street gutters (urban streets) or side ditches (rural facilities). An 

inadequate cross slope could lead to several safety issues, including hydroplaning, loss of control, 

and run-off-road crashes. This research study compared two methods of data collection, namely a 

conventional survey and a LiDAR-based survey using a terrestrial laser scanner, to evaluate the 

roadway surface’s cross slopes. Two existing rural farm road segments in San Luis Obispo County 

(California, USA) were selected for evaluation. A comparison between the results from the two 

methods showed that the difference follows a normal distribution, indicating no systematic errors 

during data collection. Also, the two-sided paired t-test between the traditional survey surveying 

and LiDAR showed no statistically significant differences between the slopes estimated using the 

two methods. This finding is important since LiDAR could increase the data collection efficiency 

and support the asset management practices of smaller county agencies. Moreover, the results 

indicate that the difference between LiDAR-derived cross slopes and field surveying 

measurements is less than 0.2% at a 95% confidence level. This level of accuracy meets cross-

slope accuracy requirements (±0.2%) used by practitioners and demonstrates that LiDAR is a 

reliable method for cross-slope data collection. The report also provides direction for future efforts 

in this area 
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ABSTRACT 

Cross slope, the transverse slope with respect to the horizon, is a critical geometric feature of 

pavement surfaces as it affects safety due to its relationship to the potential of hydroplaning 

during wet weather. Appropriate cross slopes provide adequate drainage so water will run off the 

surface to a drainage system such as street gutters (urban streets) or side ditches (rural facilities). 

An inadequate cross slope could lead to several safety issues, including hydroplaning, loss of 

control, and run-off-road crashes. This research study compared two methods of data collection, 

namely a conventional survey and a LiDAR-based survey using a terrestrial laser scanner, to 

evaluate the roadway surface’s cross slopes. Two existing rural farm road segments in San Luis 

Obispo County (California, USA) were selected for evaluation. A comparison between the 

results from the two methods showed that the difference follows a normal distribution, indicating 

no systematic errors during data collection. Also, the two-sided paired t-test between the 

traditional survey surveying and LiDAR showed no statistically significant differences between 

the slopes estimated using the two methods. This finding is important since LiDAR could 

increase the data collection efficiency and support the asset management practices of smaller 

county agencies. Moreover, the results indicate that the difference between LiDAR-derived cross 

slopes and field surveying measurements is less than 0.2% at a 95% confidence level. This level 

of accuracy meets the cross-slope accuracy requirements (±0.2%) used by practitioners and 

demonstrates that LiDAR is a reliable method for collecting cross-slope data. 



 

  

  

         

         

          

         

       

      

          

   

        

        

        

             

       

      

           

 

  

       

       

     

        

        

     

     

         

        

Chapter 1: Background and Literature Review 

1.1 Problem Statement 

Lateral water drainage on roadways is important to ensure safe and efficient operation and 

structural condition of the pavement. Failure to drain water poses the risk of hydroplaning due to 

the loss of skid resistance in wet weather. Traditional data collection methods to measure cross 

slopes and identify pavement sections with deformation, such as rutting, are time-consuming, 

labor-intensive, and require data collectors to be located on the road, which poses a safety hazard. 

Local county agencies and States’ Department of Transportation (DOTs), and especially local and 

regional agencies such as the county DOTs, could benefit from the use of Light Detection and 

Ranging (LiDAR)-based scanning using Terrestrial Laser Scanner (TLS) to collect accurate 

pavement cross-section data on roads in their jurisdictions. This study will provide a technical and 

economic evaluation of the TLS system through a comparison of the data collected through TLS 

with traditional data collection processes. TLS systems can create accurate three-dimensional (3D) 

coordinates in the form of dense point clouds for large-scale areas in a short period of time, leading 

to potential cost savings. The research will result in a framework to calibrate, collect, and process 

pavement cross-section and condition data. The project has significant potential for tech transfer 

to stakeholder agencies as the TLS data, and related processes will be relevant for several 

applications using spatial data for asset management. 

1.2 Project Objective 

Rutting is a major pavement deformation that could lead to failure in draining water from the 

pavement surface, causing loss of skid resistance in wet weather (Shams et al., 2020). The main 

concern with rutting has been related to driving safety. A timely collection of data on rut depth 

and similar deformation is an important safety practice for state and local agencies that maintain 

roadway infrastructure (Shams et al., 2020). Measuring the cross slope of pavement using a Lidar 

scan can help identify deformation, such as rutting since rutting is characterized by depression and 

lateral displacement of pavement materials. Common survey data collection methods for cross-

slope measurements are time-consuming and require data collection personnel to be present on the 

road, which poses a safety hazard. New efficient and economical methods for collecting data are 



 

 
 

 

 
  

      

    

      

         

        

        

      

           

       

  

 

     

    

 

 

 

   

            

         

       

         

      

     

         

        

     

        

   

       

now available using LiDAR mapping and related technologies to capture roadway surface data, a 

variety of other geometric design characteristics, and roadway assets in general. These new 

applications can potentially increase productivity, provide users with timely enterprise data, 

minimize road crew exposure, and create robust information products with multiple use cases 

(Sarasua et al., 2018). However, before TLS technologies are widely deployed to improve the 

efficiency of the data collection processes for pavement performance monitoring, they need to be 

evaluated for the accuracy and usefulness of the data. In our discussions with the key stakeholders, 

we also learned that how the LiDAR data compares with more traditional data in terms of its 

accuracy is a critical question to be addressed prior to widespread adoption. The research 

objectives are: 

1. Perform a technical comparison of the alternative LiDAR scanning with traditional data 

collection approaches for the collection of roadway cross-section data 

2. Establish a framework for evaluating Terrestrial LiDAR Scanning (TLS) systems for 

pavement deformation data 

1.3 Background and Significance of Work 

The Cross slope is the transverse slope of the pavement with respect to the horizon. On tangent 

sections of normal crown two-lane roads, the pavement cross section is usually highest in the center 

and drops off to either side. The cross slope is intended to drain water from the roadway laterally 

so that water can run off the surface to a drainage system. Cross slopes are essential in enhancing 

user safety by minimizing the risk of hydroplaning (Shams et al., 2020) and the formation of ice 

during cold weather (Sarasua et al., 2018). The California Department of Transportation (Caltrans) 

standards call for a 2.0 percent cross slope to be used for new construction on the traveled way for 

all types of surfaces. However, on unpaved roadway surfaces, the cross slope could be as high as 

between 2.5 to 5.0 percent (California Department of Transportation (Caltrans), 2020). Several 

methods may be used to collect roadway longitudinal grade and cross slope, including the use of 

as-built plans, traditional surveying, GPS data-logging, and photogrammetry using high-resolution 

ortho-rectified images (Shams et al., 2018). Conventional surveying yields highly accurate results 



 

 
 

 

 
  

        

       

  

 

    

   

       

        

           

     

      

             

       

         

     

       

       

      

      

        

       

      

    

      

    

        

   

         

           

        

but is time-consuming (Shams et al., 2022). Furthermore, since it is conducted in the field, 

conventional surveying requires data collectors to be located on-road, posing a safety risk to data 

collectors and interrupting the roadway traffic (Esfandabadi, 2018; Rastiveis et al., 2020). 

Photogrammetry is also accurate and less time-consuming than traditional surveying. However, 

collection and ortho-rectification of imagery of sufficient resolution to yield accurate cross-slope 

estimates (through accurate elevation measurements) are expensive (Sarasua et al., 2018). Florida 

Department of Transportation (FDOT) allows the use of electronic levels calibrated a minimum of 

once per day to measure the cross slope. For calibration, the electronic level shall be placed at the 

center location of a lane and perpendicular to the roadway centerline, and measurements are 

normally recorded to the nearest 0.1% (Florida Department of Transportation, 2016). Texas DOT 

uses a level of a 4-ft minimum length or a digital measuring device to measure the cross slope to 

the nearest 0.1% (Texas Department of Transportation, 2014). The Iowa Department of 

Transportation (Iowa DOT) uses a slope meter to measure roadway grade and cross slope for input 

to their geographical information management system (GIMS) database, which contains grades 

classified by maximum grade for each segment (Sarasua et al., 2018). The Wisconsin Department 

of Transportation uses a data-log vehicle with a vertical gyroscope, gyro compass, and a distance 

measuring instrument (DMI) to collect roadway slopes (Sarasua et al., 2018). However, using a 

slope meter, data-log vehicle, and ARAN (Automatic Road Analyzer) requires the data collection 

vehicle to physically traverse each lane of the roadway. For the collection of the cross slope, data 

must be collected in both directions. As a result, data collection for long segments can be time-

consuming and expensive (Sarasua et al., 2018). The American Association of State Highway and 

Transportation Officials (AASHTO) published a provisional standard of practice for measuring 

the transverse profile of a roadway surface (American Association of State Highway and 

Transportation Officials, 2014). However, the data collection standard does not specify particular 

equipment to be used to collect the profile data. In recent years, mobile Light Detection and 

Ranging (LiDAR) has been increasingly used for roadside inventory, road geometry 

measurements, and asset data collection (Findley et al., 2011; Mraz & Nazef, 2008; Nhat-Duc et 

al., 2018; Shokri et al., 2019, 2021; Souleyrette et al., 2003; Zhang, 2010). Souleyrette et al. (2003) 

attempted to collect grade and cross slope from LiDAR data on tangent highway sections. While 



 

 
 

 

 
  

       

         

      

       

     

           

         

  

 

 

  

 

 

 

 

 

 

        

       

         

      

         

        

   

       

     

 

 

the grade was successfully estimated within 0.5% for most sections and 0.87% for all sections, the 

accuracy of the cross-slope data was much less accurate. The Cross slope estimated from LiDAR 

deviated from field measurements by 0.72% to 1.65%. Thus, results indicated cross slope could 

not be practically estimated using a LiDAR surface model. South Carolina Department of 

Transportation (SCDOT) supplemental specifications of 2009 require the contractor to collect 

elevation data for the edge of each travel lane at 100-ft stations in tangents and 50-ft stations on 

curves (Sarasua et al., 2018). The cross slope is calculated by dividing the difference in elevation 

between the two edges of the travel lane by the lane width. 

Tsai et al. used Riegl LMS-Q120i mobile LiDAR system combined with a high-resolution video 

camera and an accurate positioning system to extract pavement cross slopes in selected highways 

in Atlanta, GA (Y. Tsai et al., 2013). Results showed the proposed method achieved desirable 

accuracy with a maximum difference of 0.28% cross-slope (0.17°) and an average difference of 

less than 0.13% cross-slope (0.08°) from the digital auto-level measurement. The acceptable 

accuracy is typically 0.2% (or 0.1°) during construction quality control. Repeatability results 

showed standard deviations within 0.05% (0.03°) at fifteen benchmarked locations in three runs 

(Y. Tsai et al., 2013). 

To evaluate pavement cross slopes for existing roadways, the conventional methods are very time-

consuming and require lane closures. Therefore, a need exists for methods that accurately measure 

pavement cross slope while eliminating lane closure requirements. More cost-effective methods 

may be beneficial to local county agencies, which often lack resources for asset management. 

Shams et al., (2018) evaluated the use of mobile LiDAR data for collecting cross slopes on paved 

roadway sections in South Carolina. The cross slopes were extracted from the LiDAR-derived 

point cloud by corresponding to two separate mesh grid surfaces, including the elevation and 

intensity of the points. The cross slope was then measured along each travel lane and compared 

with field-surveyed cross-slope data. The deviations between LiDAR-derived cross slopes and 

field measurements were less than 0.19%. 



 

 
 

 

 
  

    

       

      

       

      

        

  

 

   

     

        

       

        

      

   

  

1.4 Context and Methodology Overview 

Two farm roads in San Luis Obispo county, California, were selected for this study. The data for 

both road sections using two methods of data collection. First, the research team deployed a TLS 

to scan the road segments and create the 3D Point clouds. Second, conventional surveying (real-

time kinematics) was used to develop ground truth cross slopes for the existing road sections and 

determine the point location using the global positioning system (GPS). Then, the accuracy of 

resulted data was measured and compared with the maximum acceptable error.  

1.5 Report Overview 

This research aimed to investigate whether coordinate and elevation data from stationary LiDAR 

could be used to accurately estimate the cross slope for a section of existing county roads. The data 

for the study was collected in San Luis Obispo County, California. The report is organized as 

follows: The next Chapter provides an overview of relevant literature, followed by a description 

of the sites and data collection techniques. Data processing and Analyses are described in Chapter 

4. Chapter 5 provides the conclusions and future scope of this work. 



 

 
 

 

 
  

   

  

            

          

        

        

         

     

         

    

   

 

 

 

 

 

Chapter 2: Background and Literature Review 

2.1 Roadway Section Cross-slope 

The Cross slope is the transverse slope with respect to the horizon. On tangent sections of normal 

two-lane roads, the pavement cross section usually has the highest elevation at the center and drops 

off to either side (see Figure 1 for typical cross sections on both tangent and curved segments of 

two-lane highways). The cross slope is intended to drain water from the roadway laterally so that 

water will run off the surface to a drainage system. Cross slopes are essential for safety by 

minimizing the risk of hydroplaning and the formation of black ice during cold weather (Shams et 

al., 2020). In California, Caltrans standards call for a 2 percent cross slope to be used for new 

construction on the traveled way for all types of surfaces. However, on unpaved roadway surfaces, 

the cross slope could vary between 2.5 to 5.0 percent (Sarasua et al., 2018). 

Figure 1. Geometric Cross-Section for Two-lane roadways (New Construction). 

(Sarasua et al., 2018) 



 

 
 

 

 
  

   

         

  

         

       

      

  

        

        

          

        

      

             

       

        

     

       

       

     

         

       

      

  

 

   

       

    

       

         

2.2 Cross slope Data Collection Methods 

Methods to collect high-accuracy grade or cross-slope data include the use of as-built plans, 

photogrammetry using high-resolution ortho-rectified images, traditional surveying, GPS, and data 

logging. Traditional surveying yields highly accurate results but is time-consuming and, since it is 

conducted in the field, requires data collectors to be located on-road, posing a safety risk to data 

collectors and interference with traffic. Photogrammetry is also accurate and less time-consuming 

than traditional surveying. However, collection and ortho-rectification of aerial imagery of 

sufficient resolution to yield accurate elevation measurements are expensive (Sarasua et al., 2018). 

Florida Department of Transportation (FDOT) allows the use of electronic levels calibrated a 

minimum of once per day to measure the cross slope. In that, the electronic level shall be placed 

at the center location of a lane and perpendicular to the roadway centerline, and measurements are 

normally recorded to the nearest 0.1% (Florida Department of Transportation, 2016). Texas DOT 

uses a level of a 4-ft minimum length or a digital measuring device to measure the cross slope to 

the nearest 0.1% (Texas Department of Transportation, 2014). The Iowa Department of 

Transportation (Iowa DOT) presently uses a slope meter to measure roadway grade and cross slope 

for input to their geographical information management system (GIMS) database, which contains 

grades classified by maximum grade for each segment (Sarasua et al., 2018). The Wisconsin 

Department of Transportation uses a data-log vehicle, which has a distance measuring instrument 

(DMI), vertical gyroscope, and gyro compass, to collect roadway grade (Sarasua et al., 2018). 

However, the use of a slope meter, data-log vehicle, and ARAN requires that the data collection 

vehicle physically traverse each roadway, and for collection of the cross slope, data must be 

collected in both directions. As a result, data collection for large areas can be time-consuming and 

expensive (Sarasua et al., 2018). 

The American Association of State Highway and Transportation Officials (AASHTO) published 

a provisional standard of practice for measuring the transverse profile of pavement (American 

Association of State Highway and Transportation Officials, 2014). This standard outlines a method 

for collecting the transverse profile of pavement surface; however, the data collection standard 

does not specify particular equipment to be used to collect the profile data. In recent years, mobile 



 

 
 

 

 
  

    

            

  

 

          

       

         

      

      

 

 

       

        

        

           

         

        

        

       

 

 

   

    

    

  

 

  

LiDAR has been increasingly used for roadside inventory, road geometry measurements, and asset 

data collection (Findley et al., 2011; Fwa et al., 2016; Mraz & Nazef, 2008; Nhat-Duc et al., 2018; 

Shokri et al., 2019, 2021; Souleyrette et al., 2003; Zhang, 2010). 

Souleyrette et al. attempted to collect grade and cross slope from LiDAR data on tangent highway 

sections (Souleyrette et al., 2003). While the grade was successfully calculated within 0.5% for 

most sections and 0.87% for all sections, the accuracy of the cross-slope data was much less 

accurate. The cross slope estimated from LiDAR deviated from field measurements by 0.72% to 

1.65%. Thus, results indicated cross slope could not be practically estimated using a LiDAR 

surface model. 

The cross slope is normally calculated by dividing the difference in elevation between the two 

edges of the travel lane by the lane width. South Carolina Department of Transportation (SCDOT) 

supplemental specifications of 2009 require the contractor to collect elevation data for the edge of 

each travel lane at 100-ft stations in tangents and 50-ft stations on curves (Sarasua et al., 2018). 

Several agencies use similar guidelines, and as a result, conventional methods to evaluate 

pavement cross slopes for existing roadways are very time-consuming and require closing the lanes 

for which the cross slope is measured. Therefore, a need exists for a method that accurately 

measures pavement cross slope while eliminating lane closure requirements, and LiDAR 

technology can potentially help. 

2.3 LiDAR Technology Applications 

TLS systems may be a cost-effective alternative to manual surveys with fewer delays in traffic 

and the need for smaller staffing, site visits, and lead time (K. Yen et al., 2015). Along with the 

tangible savings of time and lower costs, TLS also can potentially reduce CO2 emissions, provide 

more detailed data, and increase the safety of the crew surveying the road (K. Yen et al., 2015; 

K. S. Yen et al., 2011). TLS surveys can be used for a variety of projects, such as cross slope 

measurements, pavement surveys, road asset inventories, bridge clearance surveys, 



 

 
 

 

 
  

   

  

  

  

    

  

 

    

 

 

 

   

 

 

 

    

  
 

   
 

 
  

 
 
  

      
 

 
    

 

  
 
 

  
 

 
    

 
 

                     

 
 

Multidisciplinary Crash Investigation Team surveys, and road network surveys, amongst other 

projects (Ravani et al., 2015; K. Yen et al., 2015, 2018; K. S. Yen et al., 2011). These surveys 

can also be reused for other projects, such as public hearing presentations and fulfilling survey 

requests (K. Yen et al., 2018). 

TLS can create a 3D point cloud for the pavement asset being surveyed. It allows for a wide 

variety of features to be extracted from them, such as pavement markings, bridge clearance 

dimensions, cross-slope, pavement cracking, crosswalks, roughness, rutting, potholes, trees, 

utility lines, utility poles, curb ramps, overhead signs, vehicles, houses, and other objects (Famili 

et al., 2021; Fan et al., 2020; Gavilán et al., 2011; Gézero & Antunes, 2019; Guan et al., 2014; H. 

Guan et al., 2015; Jung et al., 2019, 2019; Kumar et al., 2014, 2015; Rastiveis et al., 2020; 

Ravani et al., 2015; Shams et al., 2018; Shokri et al., 2019; Soilán et al., 2017, 2018; Tsai J. Y.-

C. et al., 2013; Wang et al., 2017; Wen et al., 2019; Yang et al., 2017; K. Yen et al., 2015, 2018; 

K. S. Yen et al., 2011; Zaboli et al., 2019; Zhu et al., 2020). Table 1 shows the available details 

from a sample of studies that have demonstrated the process of extracting road features. Table 2 

shows how accurate studies have been at extracting pavement distresses. 

Table 1: shows the length, accuracy, processing time, and extracted features of LiDAR studies. 

Study Feature 
Extracted 

Segment Length Processing Time Reported 
Accuracy 

Guan et al. 
2014 

Road markings 105 m 
63 m 

1.11s* 
0.89s* 

F1 88%   
Precision 83 % 

90% 
82% 

Kumar et al. 
2014 

Road markings 140 m each - True Positive 
Rate 88% 

Yang et al. 
2017 

Lane markings and 
curbs 

5.3 km 
79.8 km 

52.8 minutes 
32.4 mins 

Curb 
Precision 

87.6% Recall 
97.3% 

95.4% 
98.4% 
Road marking 



 

 
 

 

 
  

    Precision 
93.7% Recall
98.3%  
                      
97.6 % 
98.1%  

  

Soilan et al. 
2017  

Pedestrian 
crosswalks and
traffic arrows  

2.5 km   - Average  
precision 96%  
Average F score   
94%  

 - 
-   

Shams et al. 
2018  

Cross slope  3 mi  
3.4 mi  
1 mi  

3mi/2person-hr  Within required 
0.2% of manual  
survey  

Yen et al. 
2018  

Overhead sign 
inventory  

600 mi  
2061 Total lane  
miles  

 6 weeks to collect
data  
41 hr to calculate  
XYZ coordinates  
123 hr to colorize  
data  

  -

 Smart intersection 
mapping  

1.9 mi (11 
intersections  

1 day site  
reconnaissance  
1 day for planning  
1 day collection (2 
hours total)  
3 days  for post  
process  

6” error in Z  
direction  
2” error in XY  
direction  
0.5” relative  
error between 
points  

Soilan et al.
2018  

 Find pedestrian 
crossing, safety, 
and accessibility  

2.5 km   - Average  
precision 96%  
Average F score   
94%  

 -
 -    

Jung et al. 
2019  

Improve lane  
marking extraction  

180 m  
460 m   
2.13 km  
4.74 km  

Opt. processing  
1173s   
1415s  
1361s**  
2609s**  

Precision 91.5% 
F1 90.7%  
                  89.6%
89.1%  
                  
94%** 89%**  
                  
97%** 97%**  

 

Wen et al. 
2019  

Use deep learning 
to find LMs  
(Original dataset  
vs. TUM-MLS 
dataset [25])  

400 m  
1 km [26]  
 
 

 - cGAN  
    Precision 
90.15% Recall  
86.06%  
    Precision 
82.56% Recall  
79.40%  

 -



 

 
 

 

 
  

 
    

 
 

    
 

 
 

 
 

 
 

 
 

 
                  

 
     

  
   

 
  

 
 

 
  

      
 

 

 

 

  

     

 

  

 

     

  

  

  

U-Net 
Precision 

95.97% Recall 
91.55% 

Precision 
89.12% Recall 
85.04% 

Urban and 
highway roads 

300 m 
400 m 

-
-

Precision 93.38% 

90.77% 
Parking Structure 2000 m2 Error rate 3.79% 

Zaboli et al. 
2019 

Classification of 
objects 

600 m - Accuracy 90% 

Rastiveis et 
al. 2020 

Lane Marking 
extraction 

15.6 km 
9.5 km 

4.78 hr 
2.40 hr 

F1 99.4%   
Accuracy 99.6% 

99.4% 
99.2% 

* Does not include sectioning time 

** Average 

2.4 Conclusions from Literature Review 

The literature review demonstrated that i) agency requirements and specifications for cross slope 

estimation on exiting roads make the manual data collection quite expensive, and ii) that 

exploratory research using TLS has been used to extract several road features such as cross 

slopes and road markings. It is fair to say that these methods are still not fully implemented by 

the local and regional agencies that are most in need of cost savings that come with the use of 

TLS. This research focused on demonstrating the process of generating coordinate and elevation 

data in the form of point clouds generated from the stationary LiDAR and that this process could 

be used to accurately estimate the cross slope for segments of existing county roads. 



 

 
 

 

 
  

   

  

    

  

    

     

     

  

      

   

 

 

 

  

 

 

  

 

  

 

Chapter 3: Site Description and Data Acquisition 

3.1 Introduction 

There are many LiDAR systems available to scan the project site. The most used systems are the 

Terrestrial Laser Scanner (TLS) and Mobile Laser Scanner (MLS). In the project proposal, the 

researchers suggested an MLS be used to collect the data required for conducting the research 

project. However, due to Covid-19 conditions and the cost of acquiring the data through MLS, 

the researchers used a TLS to collect the project data. It is important to note the difference 

between mobile and terrestrial scanning is the completeness of scans and overall data quality. 

TLS takes longer to scan, but the data quality and accuracy are much higher than the data 

collected using the MLS. The researchers used a FARO® Focus laser scanner to scan the 

selected road surfaces. This scanner can deliver up to 350m scanning range leading to superior 

area coverage per scan position. The researchers used FARO® SCENE 3D Point Cloud Software 

to process the scans, register the scans, and create 3D point cloud models for the cross-slop 

analysis. 

3.2 Site Description 

Two farm roads in San Luis Obispo County, California, were selected for this study. Each of the 

two test segments was approximately 260 feet in length and was selected on tangent roadway 

sections to avoid horizontal curves so that the cross slope was consistent throughout the segment. 

The pavement study sections were divided into 20-ft stations and centerline, and the edge of 

pavement elevations was measured using LiDAR and conventional survey. Second, conventional 

surveying (real-time kinematics) was used to develop ground truth cross slopes for the existing 

road sections and determine the point location using the global positioning system (GPS). The 

two test road segments of Mt. Bishop and Stenner Creek Roads are shown in Figure 3.2.  



 

 
 

 

 
  

 

  

    

   

   

 

 

   

 

     

 

 

 

 

Figure 2. Road Segments Selected for Laser Scanning 

3.3 Field Surveying 

The field data collection involved two steps. The first was using conventional real-time 

Kinematic (RTK) surveying to develop a ground truth cross slope and then using the FARO laser 

scanner to scan the selected road segment. In the following section, both data collection methods 

will be explained in detail. 

3.3.1 Conventional Survey 

The real-time Kinematic (RTK) Surveying method was used to collect site data and create the as-

is condition of the road segments (California Department of Transportation (Caltrans), 2012). 

RTK is a surveying technique that measures the relative positions of the points using two Global 

Navigation Satellite System (GNSS) antennas, one as a base station and one as a rover, in real-

time with higher accuracy. The errors found in GNSS results are corrected using differential 

correction. 

Per Caltrans standards, since the cross slope is constant within each travel lane, the collected 

points using GPS were collected at road edges and the center of the road for each section to 

regenerate the normal crown shape of the roads (California Department of Transportation 

(Caltrans), 2012). Conventional survey points were imported into Autodesk Civil 3d (C3D) as an 



 

 
 

 

 
  

 

 

 

 

 

existing ground point group in which the surface was created. Table 3.1 shows the results of the 

surveying process. 



 

 
 

 
  

Table 2: Station Locations  at  10’  Intervals  for  Bishop Road & St enner  Creek Road.  

Bishop 
 Pt ID Northing Easting Elevation 

300   2,309,769.19   5,762,466.55     349.39 
301   2,309,778.97   5,762,482.77     349.07 
302   2,309,752.90   5,762,470.55     348.73 
303   2,309,738.31   5,762,486.66     348.49 
304   2,309,747.66   5,762,502.48     348.61 
305   2,309,723.60   5,762,518.74     348.43 
306   2,309,712.48   5,762,501.84     348.25 
307   2,309,685.22   5,762,519.86     347.95 
308   2,309,696.13   5,762,536.66     348.22 
309   2,309,676.07   5,762,549.64     348.19 
310   2,309,665.05   5,762,534.91     348.08 
311   2,309,644.47   5,762,570.72     348.29 
312   2,309,633.16   5,762,556.20     348.22 
313   2,309,613.80   5,762,591.38     348.62 
314   2,309,601.95   5,762,575.70     348.53 
315   2,309,579.71   5,762,612.31     348.90 
316   2,309,570.64   5,762,594.48     348.43 
317   2,309,774.34   5,762,474.75     349.48 
318   2,309,762.45   5,762,492.97     348.78 
319   2,309,756.91   5,762,485.58     348.92 
320   2,309,750.79   5,762,477.36     348.77 
321   2,309,725.06   5,762,495.29     348.33 
322   2,309,730.21   5,762,502.62     348.47 
323   2,309,735.39   5,762,510.81     348.51 
324   2,309,700.26   5,762,510.14     347.99 
325   2,309,705.60   5,762,518.88     348.38 
326   2,309,710.18   5,762,527.53     348.28 
327   2,309,690.84   5,762,528.74     348.19 
328   2,309,673.48   5,762,528.20     347.99 
329   2,309,679.30   5,762,535.89     348.21 
330   2,309,684.70   5,762,544.14     348.20 
331   2,309,669.95   5,762,542.29     348.23 
332   2,309,647.41   5,762,546.23     348.16 
333   2,309,652.46   5,762,553.59     348.28 
334   2,309,657.90   5,762,561.65     348.20 
335   2,309,637.85   5,762,563.61     348.32 
336   2,309,613.94   5,762,567.29     348.46 
337   2,309,620.11   5,762,575.40     348.48 
338   2,309,625.61   5,762,583.45     348.47 
339   2,309,606.40   5,762,584.04     348.55 
340   2,309,588.02   5,762,585.45     348.56 
341   2,309,592.79   5,762,593.41     348.68 
342   2,309,598.19   5,762,602.19     348.76 
343   2,309,742.66   5,762,494.60     348.59 
344   2,309,717.10   5,762,511.10     348.41 

 

Stenner 
 Pt ID Northing Easting Elevation 

400   2,310,000.42   5,762,038.74     364.00 
401   2,309,998.80   5,762,047.51     364.16 
402   2,309,998.41   5,762,056.59     363.85 
403   2,309,978.13   5,762,055.77     363.14 
404   2,309,978.06   5,762,046.67     363.41 
405   2,309,978.40   5,762,037.90     363.18 
406   2,309,959.12   5,762,037.21     362.46 
407   2,309,958.65   5,762,046.99     362.67 
408   2,309,958.33   5,762,055.25     362.36 
409   2,309,942.41   5,762,054.56     361.81 
410   2,309,942.46   5,762,045.65     362.11 
411   2,309,942.97   5,762,036.95     361.88 
412   2,309,929.42   5,762,036.49     361.38 
413   2,309,928.92   5,762,045.48     361.60 
414   2,309,928.34   5,762,054.45     361.26 
415   2,309,917.40   5,762,053.72     360.85 
416   2,309,916.61   5,762,044.32     361.13 
417   2,309,916.56   5,762,035.81     360.86 
418   2,309,904.39   5,762,035.67     360.49 
419   2,309,904.05   5,762,044.39     360.72 
420   2,309,903.58   5,762,053.35     360.38 
421   2,309,889.13   5,762,052.80     359.87 
422   2,309,888.72   5,762,043.12     360.17 
423   2,309,888.38   5,762,034.93     359.95 
424   2,309,874.68   5,762,034.65     359.52 
425   2,309,874.13   5,762,043.42     359.62 
426   2,309,873.79   5,762,052.60     359.33 
427   2,309,858.83   5,762,052.06     358.85 
428   2,309,858.93   5,762,042.20     359.01 
429   2,309,858.57   5,762,034.09     358.92 
430   2,309,841.88   5,762,033.35     358.17 
431   2,309,841.94   5,762,043.04     358.34 
432   2,309,841.41   5,762,051.50     358.17 
433   2,309,825.49   5,762,050.90     357.56 
434   2,309,825.74   5,762,041.95     357.73 
435   2,309,825.66   5,762,032.74     357.50 
436   2,309,807.92   5,762,032.21     356.77 
437   2,309,807.63   5,762,041.62     357.01 
438   2,309,807.57   5,762,050.63     356.92 
439   2,309,784.92   5,762,049.20     356.07 
440   2,309,784.89   5,762,039.94     355.98 
441   2,309,785.84   5,762,031.44     355.89 
442   2,310,049.48   5,762,027.98     365.42 
443   2,310,049.49   5,762,028.04     365.42 

 



 

 
 

 

 
  

   

         

           

       

          

      

      

 

  

        

        

      

      

         

       

        

        

      

       

 

 

3.4 LiDAR Scanning 

The research team used FARO Focus 350 laser scanner to scan the road segments (FARO Focus 

Laser Scanner | FARO, 2022). The scanner is classified as TLS and can capture object details at a 

350-meter maximum distance. The site location was visited before the scan to create the scan plan. 

This is an important step toward acquiring scan point clouds that are accurate and represent the as-

built condition. Further, in the scan planning, the scan settings, such as quality and resolution, 

should be determined for each scan. Both parameters (quality and resolution) control the time of 

scan and the details captured. 

3.4.1 Scan Planning and Settings 

Minimizing scanner positions will reduce scanning time and ensure point data is captured 

adequately. This can be achieved in the scan planning phase. Figure 3 shows the scanner location 

for the selected road segments, along with a map of the roadway segment. The scan locations were 

selected based on the site condition with the consideration of not causing traffic disruption and 

compromising scan data quality. The scanner was set to capture the area within 360 degrees 

horizontal by 270 degrees vertical field of view. Scan resolution (1/4) refers to the number of data 

points collected and the distance between those points. Resolution is chosen based on the level of 

detail needed and the distance to the object of interest. The second important parameter is called 

scan quality. The scan quality (3x) refers to the number of measurements the scanner makes to 

confirm point data. Increasing this setting increases scan accuracy but also increases scan time. 

Figure 4 shows the scanner settings used to collect the data. 



 

 
 

 

 
  

                                

 

 

 

 

 

Figure 3. Selected Road Segments  and scanned roadway locations  

a) Bishop RD Scan Location   b) Stenner RD  Scan Location 



 

 
 

 

 
  

 

   

   

           

          

          

        

       

       

 

 

 

Figure 4. Scanner Settings 

3.4.2 Scan processing, Registration, and 3D Point Cloud Models 

The scans were processed using FARO SCENE software. Once the scans successfully pass the 

processing stage, they will move to the registration stage. Registration is the most important phase, 

and it means aligning multiple scans in a parent coordinate system using reference positions 

common between scans. We used the artificial targets to be the common objects between the scans. 

During the scan, artificial targets (spheres) of 200 mm in diameter were placed to facilitate the 

scan registration process. Figure 4 shows an example of the spheres used during scanning the 

Stenner Road segment. 



 

 
 

 

 
  

 

 

    

  

 

   

 

 

 

    

 

Figure 5. Artificial Target (Spheres) Locations 

The raw files of the scans were imported to SCENE software for processing and registration. 

Figure 3.5 and Figure 3.6 show an example of the 3D point cloud models created for both 

segments using the scan data. The 3D point cloud models were georeferenced using surveying 

data to align the scans with real-world coordinates. 

Figure 6. Lidar Point Cloud of Bishop Road Segment 



 

 
 

 

 
  

 

     

 

  

  

      

  

  

   

 

 

 

    

 

          

        

    

         

         

           

           

Figure 7. Lidar Point Cloud of Stenner Road Segment 

The next chapter describes the process of analyzing these point clouds for cross-slope estimation 

and then comparing the results from the conventional surveying approaches. 

Chapter 4: Data Processing and Analyses 

4.1 Introduction 

This Chapter discusses the process of creating the as-built road geometry from the conventional 

survey data and the 3D point cloud models. Both datasets were then used to create the cross-

slope sections and the road profiles. 

4.2 Surface Modeling 

Conventional survey data were imported into Autodesk Civil 3d (C3D) as an existing ground 

point group in which the surface was created. Since the cross slope is constant within the travel 

lane, the survey points were collected at road edges and the center of the road for each section, as 

a result, the cross-section looks like a normal crown, triangle in shape. 

The point cloud model was imported as a .las file into Trimble Business Center (TBC) to 

subsample points and create and surface needed to work in C3D. The point clouds were classified 

in TBC to extract ground features such as poles, vegetation, and other unknown points. The 

classification step was run three times to filter out and exclude any potential noise within the point 

cloud. Once the classification process outcome is satisfactory, the next stage involved using the 

surface creation tool within TBC to create the road surface from the point cloud (see Figure 1). 

The surface is created based on triangulating all the points in the point clouds. The final surface 



 

 
 

 

 
  

        

         

      

 

  

 

 

 

 

 

 

 

 

 

 

 

 

was exported from TBC as a .xml file and then imported into C3D. The Coordinate Geometry 

(COGO) points tool with C3D was used to create points from the TBC. COGO points, in addition 

to coordinate data (x, y, and z), have a variety of properties associated with them, including point 

number, point name, raw (field) description, and full description. 



 

 
 

 

 
  

 

 

    

 

     

           

         

       

     

         

           

          

           

         

         

 

 

 
   

 

  

 

Figure 8. Roadway surfaces created using LiDAR Scan and Traditional Survey Methods 

4.3 Profile view and Cross Sections 

These new Cogo points were created and added to a new surface that would mimic the initial 

surface, being a three points cross-section but with the elevations collected from the point cloud 

instead of the conventional survey. Using point on edge of the pavements, defining the boundary 

of surface, and collected points on the crown helps on triangulation and creating the 3D surface. 

Then an elevation along a reference line (between two points at same station but on opposite side 

of the road) resulted in cross section view showing the cross slope of travel lane at specific station 

on each travel lane. The sections allow us to visually gauge the differences between each surface 

and if they were within tolerance. A volumetric TIN surface (a composite of points in a base 

surface and comparison surface) was created by using the base surface as the conventional surface 

created using the three points cross section and then the comparison surface was the surface 

defined by the three points cross-section that used the elevation from the scanner.  

The point cloud data sets were then imported into Autodesk Civil 3D software. The as-built 
cross-slop and profile were created from the point clouds as shown in Figure 9. Sample of the 
Road Cross-Slop Profiles Extracted from the 3D point Cloud model 

2 and 3. 



 

 
 

 

 
  

                                                 

 

    

 

 

 

 

  

   

 

         

          

        

       

 

 

 

Figure 9. Sample of the Road Cross-Slop Profiles Extracted from the 3D point Cloud model 

Figure 10. The road profile Extracted from the 3D point Cloud Model 

4.4 DATA ANALYSES 

4.4.1 Roadway Vertical Profile 

The point elevations obtained from the LiDAR scanning and conventional surveys were used to 

plot the cross section view of the roadway centerline and edge of travel ways (ETWs) as seen in 

Figures 4.4 and 4.5. Figure 4.4 shows the comaprison between cross sections generated from data 

collected by the two survey methods. It is noted, from these plots, that both survey methods 

resulted in almost identical profiles. 
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Figure 11. . Comparison of Roadway Profiles Generated from Conventional and  LiDAR Surveys 

for Mt. Bishop Road.  
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Figure 12. Comparison of Roadway Profiles Generated from Conventional and LiDAR Surveys  

for Stenner Creek Road  



 

 
 

 

 
  

  

 

       

     

            

  

 

  

          

 

4.4.2 Roadway Cross-Slope 

The boxplot of extracted cross slope estimates using conventional surveying and LiDAR data 

showed no outliers, even as the LiDAR survey had a slightly wider distribution of estimates (Figure 

4.6). The Q-Q plots show that both LiDAR and survey data cross slope estimates follow a normal 

distribution (Figure 4.7). 

Figure 13. Box plot for cross slope estimates using conventional survey and LiDAR survey 



 

 
 

 

 
  

  

 

       

 

 

       

      

         

   

          

           

 

 

         

      

            

          

Figure 14. Normal Q-Q plots of Conventional and LiDAR survey estimates 

One source of error in any surveying data collection is systematic error which is typically due to 

equipment imperfection. The systematic error magnitude and sign remain the same, which is 

depicted by a skew in the collected data. Random or accidental errors are due to imperfections in 

surveyors’ senses, which magnitude and sign could change for each measurement. Based on the 

Q-Q plots shown in Figure 4.5 for both measurement techniques, we can conclude that the errors 

follow a normal distribution, and it is reasonable to assume that they are random and not 

systematic. 

The use of LiDAR to extract pavement cross slope on the two roadway segments was compared 

against cross slope measurements collected using conventional surveying for the two road 

segments. The cross slope typically is a uniform transverse slope from the crown line on each side 

of the road. Each cross slope for a single travel lane falls within two GPS collected points (i.e. 



 

 
 

 

 
  

         

         

        

 

 

      

      

 

    

 

 

          

      

 
 

 

 

 

      

     

      

 

 

      

     

      

 

 

      

     

      

 

 

      

     

      

 

 

      

     

      

edge of pavement marking and centerline). To extract cross slope at travel lanes a linear regression 

was used to determine best fitted line between points which represents average cross slope. The 

use of linear regression to extract cross slope estimates has been used in other LiDAR studies 

(Shams et al., 2018). 

The survey data collected using the conventional and LiDAR methods and the comparison between 

cross slopes are shown in Tables 4.1 and 4.2 for Mt. Bishop and Stennet Creek Roads, respectively. 

Table 4.1: Comparison of cross slopes from Conventional Survey and LiDAR for Mt. Bishop 

Rd. 

Table 3: Comparison of cross slopes from Conventional Survey and LiDAR for Mt. Bishop Rd. 

Station Offset, ft Direction Conventional Survey, 

% 
LiDAR, % 

Difference, 

% 

1 

9.26 N. Bound 4.43 4.54 -0.11 
0.00 

9.46 S. Bound 0.95 0.63 0.32 

2 

9.20 N. Bound 1.52 1.41 0.11 
0.00 

10.22 S. Bound 1.47 1.37 0.10 

3 

9.33 N. Bound -0.21 -0.32 0.11 
0.00 

9.03 S. Bound 1.11 0.89 0.22 

4 

9.69 N. Bound -0.41 -0.83 0.41 
0.00 

8.95 S. Bound 1.56 0.89 0.67 

5 

9.95 N. Bound -0.20 0.00 -0.20 
0.00 

10.28 S. Bound 1.56 2.14 -0.5 



 

 
 

 

 
  

 

 

      

     

      

 

 

      

     

      

 

 

      

     

      

 

 

      

     

      

 

 

      

     

      

 

 

      

     

      

 

 

      

     

      

 

 

      

     

      

 

 

      

     

      

   

 

 

 

6 

9.74 N. Bound 1.03 0.92 0.10 
0.00 

10.23 S. Bound 3.81 5.1 -1.37 

7 

9.39 N. Bound -0.32 -0.32 0.00 
0.00 

10.50 S. Bound 2.29 2.95 -0.67 

8 

9.85 N. Bound 0.10 -0.71 0.81 
0.00 

9.63 S. Bound 2.28 1.25 1.04 

9 

9.53 N. Bound 0.42 -0.10 0.52 
0.00 

8.86 S. Bound 1.69 * * 

10 

9.73 N. Bound 0.82 0.31 0.51 
0.00 

8.92 S. Bound 1.35 0.56 0.78 

11 

9.61 N. Bound 0.31 0.00 0.31 
0.00 

8.76 S. Bound 1.14 0.11 1.03 

12 

9.75 N. Bound 0.10 -0.41 0.51 
0.00 

10.15 S. Bound 0.20 * * 

13 

10.15 N. Bound -0.69 -0.39 -0.30 
0.00 

9.43 S. Bound 0.21 -0.42 0.64 

14 

10.23 N. Bound -0.78% -0.98 0.20 
0.00 

9.26 S. Bound 1.30% 1.08 0.22 

• Data Not Available 



 

 
 

 

 
  

  

 

    

 
  

 

 

     

     

     

 

 

     

     

     

 

 

     

     

     

 

 

     

     

     

 

 

     

     

     

 

 

     

     

     

 

 

     

     

     

 

 

     

     

     

Table 4: Comparison of Cross Slopes from Conventional Survey and LiDAR 

for Stenner Creek Rd. 

Station Offset, ft Direction Conventional 

Surve, % 
LiDAR, % Difference, % 

1 

9.23 E. Bound -0.98 -0.87 -0.11 

0.00 

8.55 W. Bound 1.05 1.17 -0.12 

2 

9.01 E. Bound 1.00 1.00 0.00 

0.00 

9.41 W. Bound 2.55 2.76 -0.21 

3 

8.95 E. Bound 1.90 1.56 0.34 

0.00 

9.21 W. Bound 2.50 2.39 0.11 

4 

8.52 E. Bound 2.00 1.88 0.12 

0.00 

9.66 W. Bound 1.76 1.86 -0.10 

5 

9.84 E. Bound 1.63 1.63 0.00 

0.00 

8.83 W. Bound 1.02 1.02 0.00 

6 

9.23 E. Bound 3.14 3.14 0.00 

0.00 

8.76 W. Bound 1.14 1.37 -0.23 

7 

9.61 E. Bound 3.12 3.12 0.00 

0.00 

8.20 W. Bound 2.68 2.80 -0.12 

8 

8.98 E. Bound 3.79 3.67 0.11 

0.00 

8.72 W. Bound 2.64 2.64 0.00 



 

 
 

 

 
  

 

 

     

     

     

 

 

     

     

     

 

 

     

     

     

 

 

     

     

     

 

 

     

     

     

 

 

     

     

     

 

         

      

       

     

       

        

 

 

 

9 

9.28 E. Bound 3.02 2.91 0.11 

0.00 

8.51 W. Bound 3.17 3.29 -0.12 

10 

9.05 E. Bound 3.76 3.65 0.11 

0.00 

9.00 W. Bound 2.44 2.56 -0.11 

11 

8.88 E. Bound 3.38 3.27 0.11 

0.00 

8.70 W. Bound 2.64 2.64 0.00 

12 

8.32 E. Bound 3.73 3.73 0.00 

0.00 

9.77 W. Bound 2.15 2.05 0.10 

13 

9.09 E. Bound 2.97 2.86 0.11 

0.00 

8.78 W. Bound 2.62 2.62 0.00 

14 

9.09 E. Bound 3.41 3.52 -0.11 

0.00 

8.83 W. Bound 1.81 1.93 -0.12 

In evaluating the cross slopes at reference station locations, the highest difference between the two 

measurement techniques was on two Bishop Rd stations, where the slopes measured differed by -

1.37% and +1.04%, as shown in Tables 4.1 and 4.2 (with red text highlighting the difference in 

estimated slope). A p-value of 0.076 for a two-sided paired t-test for conventional surveying and 

LiDAR data collection indicated that there was no statistical difference between the mean 

difference of the LiDAR-derived slopes and field surveying (see Table 3) at the 95% confidence 

level. 



 

 
 

 

 
  

     

 

    

   

   

   

  

 
 

  

  

  

  

 

 

         

         

       

    

        

       

        

         

         

       

 

  

Table 5. Paired t-test – Comparing mean cross slope between Conventional surveying and 

LiDAR methods. 

Conventional Surveying LiDAR 

Mean 1.69% 1.59% 

Variance 0.02% 0.02% 

Observations 54 54 

Pearson Correlation 0.968587 

Hypothesized Mean 

Difference 
0 

Df 53 

t Stat 1.808572 

P(T<=t) two-tail 0.076192 

t Critical two-tail 2.005746 

With regards to the SHRP2 guide specification, a slope tolerance value of ± 0.2% of the design 

value is deemed acceptable for final measurement after project completion (Hunt et al., 2011). One 

may observe that, on average, the difference between slope measurements using the two techniques 

is only 0.097% (1.688-1.591), which is lower than the threshold specified by SHRP2 research. 

Furthermore, the absolute value of the difference between the estimated slopes using the two 

methods was less than or equal to 0.2% for 31 out of 54 stations (61.1.% of measurement 

locations). Also, another statistical test comparing the absolute difference in slope estimates from 

the two techniques to 0.2% yielded a p-value of 0.058. It also indicated that the null hypothesis of 

the absolute difference being the two sets of estimates being less than 0.2% could not be rejected. 

Based on these findings, the authors infer that the LiDAR survey provides similarly accurate 

estimates of the cross slope compared to conventional surveys. 



 

 
 

 

 
  

  

   

           

        

  

         

  

          

          

       

         

          

         

       

 

 

     

 

      

    

    

        

        

         

         

 

Chapter 5: Conclusion and Recommendations 

5.1 Summary and Conclusions 

Cross slope, the transverse slope with respect to the horizon, is a geometric feature of pavement 

surfaces, and it is an important safety factor. The inadequate cross slope could lead to several 

safety issues, including hydroplaning, loss of control, and run-off-road crashes. Traditional 

surveying is usually applied to evaluate cross slopes and yields highly accurate results but is time-

consuming, expensive, and results in worker safety issues. County agencies, in particular, need a 

more efficient pavement cross-slope survey due to the budget concerns they face. This research 

investigated the use of TLS to extract cross slopes on two 2-lane farm road segments in San Luis 

Obispo County, CA. We obtained coordinates and elevation data from LiDAR as well as through 

conventional surveys to assess if LiDAR data could be used to accurately determine the cross slope 

for the section. The result of statistical analysis indicated the average deviation between TLS data 

and conventional surveying using RTK GPS was less than the minimum acceptable accuracy level 

(± 0.2%). Therefore, according to the analysis documented in the research, the authors conclude 

that: 

1. LiDAR technology is an effective alternative for collecting roadway elevation data for 

cross-slope estimation. 

2. Roadway profiles developed from data collected using conventional, and LiDAR surveys 

are sufficiently similar even on county-maintained roads that are likely to go through 

maintenance cycles less frequently than the state DOT-maintained roads. 

These conclusions point to LiDAR being a viable technology to evaluate cross slopes for 

roadways with good pavement surface conditions. Furthermore, it appears that the LiDAR point 

cloud may be able to capture several pavement distress types (observed in Figure 4), and this 

capability is worth exploring further by the resource-constrained public works departments in local 

jurisdictions. 



 

 
 

 

 
  

   

        

      

     

    

       

     

          

         

        

        

     

        

       

  

    

       

    

       

   

        

         

         

         

 

        

        

      

5.2 Recommendations and Future Scope 

This research provides a technical evaluation of TLS systems with respect to the accuracy and 

precision of collected cross-slope data and procedures to collect and process data. The research 

approach covered various data elements and variables, including profile view, cross-section 

comparisons, and ground proofing using conventional survey methods. The use of TLS can 

improve safety in work zones by considerably reducing the time surveyors and other personnel are 

exposed to risks associated with working close to the traveling public. Evidence from research 

results demonstrates that TLS can be an effective method for collecting accurate cross-slope data. 

The time required for data collection indicates that TLS is a cost-effective method for measuring 

cross slopes continuously along a roadway. Researchers recommend that TLS be implemented as 

the preferred means of producing data for the Caltrans pavement slope/cross slope verification 

program. An even greater return on investment can be achieved by using the TLS data for 

additional applications and asset management needs. It should be noted that additional extraction 

of data items can add to vendor costs unless these procedures are performed in-house, which would 

require added in-house technical as well as human resources. 

Generally, LiDAR scanning devices can only collect data within line of sight. Therefore, other 

forms of LiDAR data collection, for example, Mobile Terrestrial Laser Scanning (MTLS), are also 

recommended. Similar to TLS, MTLS is capable of collecting an entire cross-section, with an 

exception at steep side slopes. Moreover, a vehicle-mounted LiDAR device can collect data at 

highway speeds, which increases the time efficiency data collection procedure. 

The point density (and accuracy) diminishes as distance increases from the LiDAR scanner. 

Therefore, multiple benchmarks should be used to set up the scanner in order to not exceed the 

optimum range for data collection. Due to the tremendous number of points within the resultant 

point cloud, the manual extraction of data is tedious; automating those processes can improve cost-

effectiveness. Therefore, automated/semi-automated techniques for filtering, segmentation, and 

classification of point clouds to extract roadway objects are desirable. As data processing and 

computing capabilities expand, commercial software product space in the automated extraction of 

information from LiDAR point clouds is worth watching. 
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	pavement surfaces as it affects safety due to its relationship to the potential of hydroplaning during wet weather. Appropriate cross slopes provide adequate drainage so water will run off the surface to a drainage system such as street gutters (urban streets) or side ditches (rural facilities). An inadequate cross slope could lead to several safety issues, including hydroplaning, loss of control, and run-off-road crashes. This research study compared two methods of data collection, namely a conventional su
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	1.1 Problem Statement 
	1.1 Problem Statement 
	Lateral water drainage on roadways is important to ensure safe and efficient operation and structural condition of the pavement. Failure to drain water poses the risk of hydroplaning due to the loss of skid resistance in wet weather. Traditional data collection methods to measure cross slopes and identify pavement sections with deformation, such as rutting, are time-consuming, labor-intensive, and require data collectors to be located on the road, which poses a safety hazard. Local county agencies and State

	1.2 Project Objective 
	1.2 Project Objective 
	Rutting is a major pavement deformation that could lead to failure in draining water from the pavement surface, causing loss of skid resistance in wet weather (Shams et al., 2020). The main concern with rutting has been related to driving safety. A timely collection of data on rut depth and similar deformation is an important safety practice for state and local agencies that maintain roadway infrastructure (Shams et al., 2020). Measuring the cross slope of pavement using a Lidar scan can help identify defor
	Rutting is a major pavement deformation that could lead to failure in draining water from the pavement surface, causing loss of skid resistance in wet weather (Shams et al., 2020). The main concern with rutting has been related to driving safety. A timely collection of data on rut depth and similar deformation is an important safety practice for state and local agencies that maintain roadway infrastructure (Shams et al., 2020). Measuring the cross slope of pavement using a Lidar scan can help identify defor
	now available using LiDAR mapping and related technologies to capture roadway surface data, a variety of other geometric design characteristics, and roadway assets in general. These new applications can potentially increase productivity, provide users with timely enterprise data, minimize road crew exposure, and create robust information products with multiple use cases (Sarasua et al., 2018). However, before TLS technologies are widely deployed to improve the efficiency of the data collection processes for

	1. 
	1. 
	1. 
	Perform a technical comparison of the alternative LiDAR scanning with traditional data collection approaches for the collection of roadway cross-section data 

	2. 
	2. 
	Establish a framework for evaluating Terrestrial LiDAR Scanning (TLS) systems for pavement deformation data 



	1.3 Background and Significance of Work 
	1.3 Background and Significance of Work 
	The Cross slope is the transverse slope of the pavement with respect to the horizon. On tangent sections of normal crown two-lane roads, the pavement cross section is usually highest in the center and drops off to either side. The cross slope is intended to drain water from the roadway laterally so that water can run off the surface to a drainage system. Cross slopes are essential in enhancing user safety by minimizing the risk of hydroplaning (Shams et al., 2020) and the formation of ice during cold weathe
	The Cross slope is the transverse slope of the pavement with respect to the horizon. On tangent sections of normal crown two-lane roads, the pavement cross section is usually highest in the center and drops off to either side. The cross slope is intended to drain water from the roadway laterally so that water can run off the surface to a drainage system. Cross slopes are essential in enhancing user safety by minimizing the risk of hydroplaning (Shams et al., 2020) and the formation of ice during cold weathe
	but is time-consuming (Shams et al., 2022). Furthermore, since it is conducted in the field, conventional surveying requires data collectors to be located on-road, posing a safety risk to data collectors and interrupting the roadway traffic (Esfandabadi, 2018; Rastiveis et al., 2020). 
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	Photogrammetry is also accurate and less time-consuming than traditional surveying. However, collection and ortho-rectification of imagery of sufficient resolution to yield accurate cross-slope estimates (through accurate elevation measurements) are expensive (Sarasua et al., 2018). Florida Department of Transportation (FDOT) allows the use of electronic levels calibrated a minimum of once per day to measure the cross slope. For calibration, the electronic level shall be placed at the center location of a l
	Photogrammetry is also accurate and less time-consuming than traditional surveying. However, collection and ortho-rectification of imagery of sufficient resolution to yield accurate cross-slope estimates (through accurate elevation measurements) are expensive (Sarasua et al., 2018). Florida Department of Transportation (FDOT) allows the use of electronic levels calibrated a minimum of once per day to measure the cross slope. For calibration, the electronic level shall be placed at the center location of a l
	the grade was successfully estimated within 0.5% for most sections and 0.87% for all sections, the accuracy of the cross-slope data was much less accurate. The Cross slope estimated from LiDAR deviated from field measurements by 0.72% to 1.65%. Thus, results indicated cross slope could not be practically estimated using a LiDAR surface model. South Carolina Department of Transportation (SCDOT) supplemental specifications of 2009 require the contractor to collect elevation data for the edge of each travel la
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	Tsai et al. used Riegl LMS-Q120i mobile LiDAR system combined with a high-resolution video camera and an accurate positioning system to extract pavement cross slopes in selected highways in Atlanta, GA (Y. Tsai et al., 2013). Results showed the proposed method achieved desirable accuracy with a maximum difference of 0.28% cross-slope (0.17°) and an average difference of less than 0.13% cross-slope (0.08°) from the digital auto-level measurement. The acceptable accuracy is typically 0.2% (or 0.1°) during con
	(Y. Tsai et al., 2013). 
	To evaluate pavement cross slopes for existing roadways, the conventional methods are very time-consuming and require lane closures. Therefore, a need exists for methods that accurately measure pavement cross slope while eliminating lane closure requirements. More cost-effective methods may be beneficial to local county agencies, which often lack resources for asset management. Shams et al., (2018) evaluated the use of mobile LiDAR data for collecting cross slopes on paved roadway sections in South Carolina
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	1.4 Context and Methodology Overview 
	1.4 Context and Methodology Overview 
	Two farm roads in San Luis Obispo county, California, were selected for this study. The data for both road sections using two methods of data collection. First, the research team deployed a TLS to scan the road segments and create the 3D Point clouds. Second, conventional surveying (realtime kinematics) was used to develop ground truth cross slopes for the existing road sections and determine the point location using the global positioning system (GPS). Then, the accuracy of resulted data was measured and c
	-


	1.5 Report Overview 
	1.5 Report Overview 
	This research aimed to investigate whether coordinate and elevation data from stationary LiDAR could be used to accurately estimate the cross slope for a section of existing county roads. The data for the study was collected in San Luis Obispo County, California. The report is organized as follows: The next Chapter provides an overview of relevant literature, followed by a description of the sites and data collection techniques. Data processing and Analyses are described in Chapter 
	4. Chapter 5 provides the conclusions and future scope of this work. 
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	2.1 Roadway Section Cross-slope 
	2.1 Roadway Section Cross-slope 
	The Cross slope is the transverse slope with respect to the horizon. On tangent sections of normal two-lane roads, the pavement cross section usually has the highest elevation at the center and drops off to either side (see Figure 1 for typical cross sections on both tangent and curved segments of two-lane highways). The cross slope is intended to drain water from the roadway laterally so that water will run off the surface to a drainage system. Cross slopes are essential for safety by minimizing the risk o
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	Figure 1. Geometric Cross-Section for Two-lane roadways (New Construction). (Sarasua et al., 2018) 
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	2.2 Cross slope Data Collection Methods 
	2.2 Cross slope Data Collection Methods 
	Methods to collect high-accuracy grade or cross-slope data include the use of as-built plans, photogrammetry using high-resolution ortho-rectified images, traditional surveying, GPS, and data logging. Traditional surveying yields highly accurate results but is time-consuming and, since it is conducted in the field, requires data collectors to be located on-road, posing a safety risk to data collectors and interference with traffic. Photogrammetry is also accurate and less time-consuming than traditional sur
	The American Association of State Highway and Transportation Officials (AASHTO) published a provisional standard of practice for measuring the transverse profile of pavement (American Association of State Highway and Transportation Officials, 2014). This standard outlines a method for collecting the transverse profile of pavement surface; however, the data collection standard does not specify particular equipment to be used to collect the profile data. In recent years, mobile 
	The American Association of State Highway and Transportation Officials (AASHTO) published a provisional standard of practice for measuring the transverse profile of pavement (American Association of State Highway and Transportation Officials, 2014). This standard outlines a method for collecting the transverse profile of pavement surface; however, the data collection standard does not specify particular equipment to be used to collect the profile data. In recent years, mobile 
	LiDAR has been increasingly used for roadside inventory, road geometry measurements, and asset data collection (Findley et al., 2011; Fwa et al., 2016; Mraz & Nazef, 2008; Nhat-Duc et al., 2018; Shokri et al., 2019, 2021; Souleyrette et al., 2003; Zhang, 2010). 
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	Souleyrette et al. attempted to collect grade and cross slope from LiDAR data on tangent highway sections (Souleyrette et al., 2003). While the grade was successfully calculated within 0.5% for most sections and 0.87% for all sections, the accuracy of the cross-slope data was much less accurate. The cross slope estimated from LiDAR deviated from field measurements by 0.72% to 1.65%. Thus, results indicated cross slope could not be practically estimated using a LiDAR surface model. 
	The cross slope is normally calculated by dividing the difference in elevation between the two edges of the travel lane by the lane width. South Carolina Department of Transportation (SCDOT) supplemental specifications of 2009 require the contractor to collect elevation data for the edge of each travel lane at 100-ft stations in tangents and 50-ft stations on curves (Sarasua et al., 2018). Several agencies use similar guidelines, and as a result, conventional methods to evaluate pavement cross slopes for ex

	2.3 LiDAR Technology Applications 
	2.3 LiDAR Technology Applications 
	TLS systems may be a cost-effective alternative to manual surveys with fewer delays in traffic and the need for smaller staffing, site visits, and lead time (K. Yen et al., 2015). Along with the 2 emissions, provide more detailed data, and increase the safety of the crew surveying the road (K. Yen et al., 2015; 
	tangible savings of time and lower costs, TLS also can potentially reduce CO

	K. S. Yen et al., 2011). TLS surveys can be used for a variety of projects, such as cross slope measurements, pavement surveys, road asset inventories, bridge clearance surveys, 
	Artifact
	Multidisciplinary Crash Investigation Team surveys, and road network surveys, amongst other projects (Ravani et al., 2015; K. Yen et al., 2015, 2018; K. S. Yen et al., 2011). These surveys can also be reused for other projects, such as public hearing presentations and fulfilling survey requests (K. Yen et al., 2018). 
	TLS can create a 3D point cloud for the pavement asset being surveyed. It allows for a wide variety of features to be extracted from them, such as pavement markings, bridge clearance dimensions, cross-slope, pavement cracking, crosswalks, roughness, rutting, potholes, trees, utility lines, utility poles, curb ramps, overhead signs, vehicles, houses, and other objects (Famili et al., 2021; Fan et al., 2020; Gavilán et al., 2011; Gézero & Antunes, 2019; Guan et al., 2014; H. Guan et al., 2015; Jung et al., 20
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	C. et al., 2013; Wang et al., 2017; Wen et al., 2019; Yang et al., 2017; K. Yen et al., 2015, 2018; 
	K. S. Yen et al., 2011; Zaboli et al., 2019; Zhu et al., 2020). Table 1 shows the available details from a sample of studies that have demonstrated the process of extracting road features. Table 2 shows how accurate studies have been at extracting pavement distresses. 
	Table 1: shows the length, accuracy, processing time, and extracted features of LiDAR studies. 
	Study 
	Study 
	Study 
	Feature Extracted 
	Segment Length 
	Processing Time 
	Reported Accuracy 

	Guan et al. 2014 
	Guan et al. 2014 
	Road markings 
	105 m 63 m 
	1.11s* 0.89s* 
	F1 88%   Precision 83 % 90% 82% 

	Kumar et al. 2014 
	Kumar et al. 2014 
	Road markings 
	140 m each 
	-
	True Positive Rate 88% 

	Yang et al. 2017 
	Yang et al. 2017 
	Lane markings and curbs 
	5.3 km 79.8 km 
	52.8 minutes 32.4 mins 
	Curb Precision 87.6% Recall 97.3% 95.4% 98.4% Road marking 
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	Table
	TR
	Precision 93.7% Recall 98.3% 97.6 % 98.1% 

	Soilan et al. 
	Soilan et al. 
	Pedestrian 
	2.5 km 
	-
	Average 

	2017 
	2017 
	crosswalks and traffic arrows 
	--
	precision 96% Average F score 94% 

	Shams et al. 2018 
	Shams et al. 2018 
	Cross slope 
	3 mi 3.4 mi 1 mi 
	3mi/2person-hr 
	Within required 0.2% of manual survey 

	Yen et al. 
	Yen et al. 
	Overhead sign 
	600 mi 
	6 weeks to collect 
	-

	2018 
	2018 
	inventory 
	2061 Total lane miles 
	data 41 hr to calculate XYZ coordinates 123 hr to colorize data 

	TR
	Smart intersection 
	1.9 mi (11 
	1 day site 
	6” error in Z 

	TR
	mapping 
	intersections 
	reconnaissance 1 day for planning 1 day collection (2 hours total) 3 days  for post process 
	direction 2” error in XY direction 0.5” relative error between points 

	Soilan et al. 
	Soilan et al. 
	Find pedestrian 
	2.5 km 
	-
	Average 

	2018 
	2018 
	crossing, safety, and accessibility 
	--
	precision 96% Average F score 94% 

	Jung et al. 
	Jung et al. 
	Improve lane 
	180 m 
	Opt. processing 
	Precision 91.5% 

	2019 
	2019 
	marking extraction 
	460 m 
	1173s 
	F1 90.7% 

	TR
	2.13 km 
	1415s 
	89.6% 

	TR
	4.74 km 
	1361s** 2609s** 
	89.1% 

	TR
	94%** 89%** 

	TR
	97%** 97%** 

	Wen et al. 
	Wen et al. 
	Use deep learning 
	400 m 
	-
	cGAN 

	2019 
	2019 
	to find LMs (Original dataset vs. TUM-MLS dataset [25]) 
	1 km [26] 
	-
	Precision 90.15% Recall 86.06% Precision 82.56% Recall 79.40% 
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	Table
	TR
	U-Net Precision 95.97% Recall 91.55% Precision 89.12% Recall 85.04% 

	TR
	Urban and highway roads 
	300 m 400 m 
	--
	Precision 93.38% 90.77% 

	TR
	Parking Structure 
	2000 m2 
	Error rate 3.79% 

	Zaboli et al. 2019 
	Zaboli et al. 2019 
	Classification of objects 
	600 m 
	-
	Accuracy 90% 

	Rastiveis et al. 2020 
	Rastiveis et al. 2020 
	Lane Marking extraction 
	15.6 km 9.5 km 
	4.78 hr 2.40 hr 
	F1 99.4%   Accuracy 99.6% 99.4% 99.2% 


	* Does not include sectioning time ** Average 

	2.4 Conclusions from Literature Review 
	2.4 Conclusions from Literature Review 
	The literature review demonstrated that i) agency requirements and specifications for cross slope estimation on exiting roads make the manual data collection quite expensive, and ii) that exploratory research using TLS has been used to extract several road features such as cross slopes and road markings. It is fair to say that these methods are still not fully implemented by the local and regional agencies that are most in need of cost savings that come with the use of TLS. This research focused on demonstr
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	Chapter 3: Site Description and Data Acquisition 
	Chapter 3: Site Description and Data Acquisition 
	3.1 Introduction 
	3.1 Introduction 
	There are many LiDAR systems available to scan the project site. The most used systems are the Terrestrial Laser Scanner (TLS) and Mobile Laser Scanner (MLS). In the project proposal, the researchers suggested an MLS be used to collect the data required for conducting the research project. However, due to Covid-19 conditions and the cost of acquiring the data through MLS, the researchers used a TLS to collect the project data. It is important to note the difference between mobile and terrestrial scanning is

	3.2 Site Description 
	3.2 Site Description 
	Two farm roads in San Luis Obispo County, California, were selected for this study. Each of the two test segments was approximately 260 feet in length and was selected on tangent roadway sections to avoid horizontal curves so that the cross slope was consistent throughout the segment. The pavement study sections were divided into 20-ft stations and centerline, and the edge of pavement elevations was measured using LiDAR and conventional survey. Second, conventional surveying (real-time kinematics) was used 
	Artifact
	Artifact
	Figure 2. Road Segments Selected for Laser Scanning 

	3.3 Field Surveying 
	3.3 Field Surveying 
	The field data collection involved two steps. The first was using conventional real-time Kinematic (RTK) surveying to develop a ground truth cross slope and then using the FARO laser scanner to scan the selected road segment. In the following section, both data collection methods will be explained in detail. 
	3.3.1 Conventional Survey 
	3.3.1 Conventional Survey 
	The real-time Kinematic (RTK) Surveying method was used to collect site data and create the as-is condition of the road segments (California Department of Transportation (Caltrans), 2012). RTK is a surveying technique that measures the relative positions of the points using two Global Navigation Satellite System (GNSS) antennas, one as a base station and one as a rover, in real-time with higher accuracy. The errors found in GNSS results are corrected using differential correction. 
	Per Caltrans standards, since the cross slope is constant within each travel lane, the collected points using GPS were collected at road edges and the center of the road for each section to regenerate the normal crown shape of the roads (California Department of Transportation (Caltrans), 2012). Conventional survey points were imported into Autodesk Civil 3d (C3D) as an 
	Per Caltrans standards, since the cross slope is constant within each travel lane, the collected points using GPS were collected at road edges and the center of the road for each section to regenerate the normal crown shape of the roads (California Department of Transportation (Caltrans), 2012). Conventional survey points were imported into Autodesk Civil 3d (C3D) as an 
	existing ground point group in which the surface was created. Table 3.1 shows the results of the surveying process. 

	Artifact
	Artifact
	Table 2: Station Locations at 10’ Intervals for Bishop Road & Stenner Creek Road. 
	Table 2: Station Locations at 10’ Intervals for Bishop Road & Stenner Creek Road. 
	Bishop Stenner 
	Pt ID 
	Pt ID 
	Pt ID 
	Northing 
	Easting 
	Elevation 
	Pt ID 
	Northing 
	Easting 
	Elevation 

	TR
	2,309,769.19 
	5,762,466.55 
	349.39 
	2,310,000.42 
	5,762,038.74 
	364.00 

	301 
	301 
	2,309,778.97 
	5,762,482.77 
	349.07 
	401 
	2,309,998.80 
	5,762,047.51 
	364.16 

	302 
	302 
	2,309,752.90 
	5,762,470.55 
	348.73 
	402 
	2,309,998.41 
	5,762,056.59 
	363.85 

	303 
	303 
	2,309,738.31 
	5,762,486.66 
	348.49 
	403 
	2,309,978.13 
	5,762,055.77 
	363.14 

	304 
	304 
	2,309,747.66 
	5,762,502.48 
	348.61 
	404 
	2,309,978.06 
	5,762,046.67 
	363.41 

	TR
	2,309,723.60 
	5,762,518.74 
	348.43 
	2,309,978.40 
	5,762,037.90 
	363.18 

	306 
	306 
	2,309,712.48 
	5,762,501.84 
	348.25 
	406 
	2,309,959.12 
	5,762,037.21 
	362.46 

	307 
	307 
	2,309,685.22 
	5,762,519.86 
	347.95 
	407 
	2,309,958.65 
	5,762,046.99 
	362.67 

	308 
	308 
	2,309,696.13 
	5,762,536.66 
	348.22 
	408 
	2,309,958.33 
	5,762,055.25 
	362.36 

	309 
	309 
	2,309,676.07 
	5,762,549.64 
	348.19 
	409 
	2,309,942.41 
	5,762,054.56 
	361.81 

	TR
	2,309,665.05 
	5,762,534.91 
	348.08 
	2,309,942.46 
	5,762,045.65 
	362.11 

	311 
	311 
	2,309,644.47 
	5,762,570.72 
	348.29 
	411 
	2,309,942.97 
	5,762,036.95 
	361.88 

	312 
	312 
	2,309,633.16 
	5,762,556.20 
	348.22 
	412 
	2,309,929.42 
	5,762,036.49 
	361.38 

	313 
	313 
	2,309,613.80 
	5,762,591.38 
	348.62 
	413 
	2,309,928.92 
	5,762,045.48 
	361.60 

	314 
	314 
	2,309,601.95 
	5,762,575.70 
	348.53 
	414 
	2,309,928.34 
	5,762,054.45 
	361.26 

	TR
	2,309,579.71 
	5,762,612.31 
	348.90 
	2,309,917.40 
	5,762,053.72 
	360.85 

	316 
	316 
	2,309,570.64 
	5,762,594.48 
	348.43 
	416 
	2,309,916.61 
	5,762,044.32 
	361.13 

	317 
	317 
	2,309,774.34 
	5,762,474.75 
	349.48 
	417 
	2,309,916.56 
	5,762,035.81 
	360.86 

	318 
	318 
	2,309,762.45 
	5,762,492.97 
	348.78 
	418 
	2,309,904.39 
	5,762,035.67 
	360.49 

	319 
	319 
	2,309,756.91 
	5,762,485.58 
	348.92 
	419 
	2,309,904.05 
	5,762,044.39 
	360.72 

	TR
	2,309,750.79 
	5,762,477.36 
	348.77 
	2,309,903.58 
	5,762,053.35 
	360.38 

	321 
	321 
	2,309,725.06 
	5,762,495.29 
	348.33 
	421 
	2,309,889.13 
	5,762,052.80 
	359.87 

	322 
	322 
	2,309,730.21 
	5,762,502.62 
	348.47 
	422 
	2,309,888.72 
	5,762,043.12 
	360.17 

	323 
	323 
	2,309,735.39 
	5,762,510.81 
	348.51 
	423 
	2,309,888.38 
	5,762,034.93 
	359.95 

	324 
	324 
	2,309,700.26 
	5,762,510.14 
	347.99 
	424 
	2,309,874.68 
	5,762,034.65 
	359.52 

	TR
	2,309,705.60 
	5,762,518.88 
	348.38 
	2,309,874.13 
	5,762,043.42 
	359.62 

	326 
	326 
	2,309,710.18 
	5,762,527.53 
	348.28 
	426 
	2,309,873.79 
	5,762,052.60 
	359.33 

	327 
	327 
	2,309,690.84 
	5,762,528.74 
	348.19 
	427 
	2,309,858.83 
	5,762,052.06 
	358.85 

	328 
	328 
	2,309,673.48 
	5,762,528.20 
	347.99 
	428 
	2,309,858.93 
	5,762,042.20 
	359.01 

	329 
	329 
	2,309,679.30 
	5,762,535.89 
	348.21 
	429 
	2,309,858.57 
	5,762,034.09 
	358.92 

	TR
	2,309,684.70 
	5,762,544.14 
	348.20 
	2,309,841.88 
	5,762,033.35 
	358.17 

	331 
	331 
	2,309,669.95 
	5,762,542.29 
	348.23 
	431 
	2,309,841.94 
	5,762,043.04 
	358.34 

	332 
	332 
	2,309,647.41 
	5,762,546.23 
	348.16 
	432 
	2,309,841.41 
	5,762,051.50 
	358.17 

	333 
	333 
	2,309,652.46 
	5,762,553.59 
	348.28 
	433 
	2,309,825.49 
	5,762,050.90 
	357.56 

	334 
	334 
	2,309,657.90 
	5,762,561.65 
	348.20 
	434 
	2,309,825.74 
	5,762,041.95 
	357.73 

	TR
	2,309,637.85 
	5,762,563.61 
	348.32 
	2,309,825.66 
	5,762,032.74 
	357.50 

	336 
	336 
	2,309,613.94 
	5,762,567.29 
	348.46 
	436 
	2,309,807.92 
	5,762,032.21 
	356.77 

	337 
	337 
	2,309,620.11 
	5,762,575.40 
	348.48 
	437 
	2,309,807.63 
	5,762,041.62 
	357.01 

	338 
	338 
	2,309,625.61 
	5,762,583.45 
	348.47 
	438 
	2,309,807.57 
	5,762,050.63 
	356.92 

	339 
	339 
	2,309,606.40 
	5,762,584.04 
	348.55 
	439 
	2,309,784.92 
	5,762,049.20 
	356.07 

	TR
	2,309,588.02 
	5,762,585.45 
	348.56 
	2,309,784.89 
	5,762,039.94 
	355.98 

	341 
	341 
	2,309,592.79 
	5,762,593.41 
	348.68 
	441 
	2,309,785.84 
	5,762,031.44 
	355.89 

	342 
	342 
	2,309,598.19 
	5,762,602.19 
	348.76 
	442 
	2,310,049.48 
	5,762,027.98 
	365.42 

	343 
	343 
	2,309,742.66 
	5,762,494.60 
	348.59 
	443 
	2,310,049.49 
	5,762,028.04 
	365.42 

	344 
	344 
	2,309,717.10 
	5,762,511.10 
	348.41 
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	3.4 LiDAR Scanning 
	3.4 LiDAR Scanning 
	The research team used FARO Focus 350 laser scanner to scan the road segments (FARO Focus Laser Scanner | FARO, 2022). The scanner is classified as TLS and can capture object details at a 350-meter maximum distance. The site location was visited before the scan to create the scan plan. This is an important step toward acquiring scan point clouds that are accurate and represent the as-built condition. Further, in the scan planning, the scan settings, such as quality and resolution, should be determined for e
	3.4.1 Scan Planning and Settings 
	3.4.1 Scan Planning and Settings 
	Minimizing scanner positions will reduce scanning time and ensure point data is captured adequately. This can be achieved in the scan planning phase. Figure 3 shows the scanner location for the selected road segments, along with a map of the roadway segment. The scan locations were selected based on the site condition with the consideration of not causing traffic disruption and compromising scan data quality. The scanner was set to capture the area within 360 degrees horizontal by 270 degrees vertical field
	Artifact
	N 
	a) Bishop RD Scan Location b) Stenner RD Scan Location 
	Artifact
	Figure 3. Selected Road Segments and scanned roadway locations 
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	Figure 4. Scanner Settings 

	3.4.2 Scan processing, Registration, and 3D Point Cloud Models 
	3.4.2 Scan processing, Registration, and 3D Point Cloud Models 
	The scans were processed using FARO SCENE software. Once the scans successfully pass the processing stage, they will move to the registration stage. Registration is the most important phase, and it means aligning multiple scans in a parent coordinate system using reference positions common between scans. We used the artificial targets to be the common objects between the scans. During the scan, artificial targets (spheres) of 200 mm in diameter were placed to facilitate the scan registration process. Figure
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	Figure 5. Artificial Target (Spheres) Locations 
	Figure 5. Artificial Target (Spheres) Locations 
	The raw files of the scans were imported to SCENE software for processing and registration. Figure 3.5 and Figure 3.6 show an example of the 3D point cloud models created for both segments using the scan data. The 3D point cloud models were georeferenced using surveying data to align the scans with real-world coordinates. 
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	Figure 6. Lidar Point Cloud of Bishop Road Segment 
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	Figure 7. Lidar Point Cloud of Stenner Road Segment 
	Figure 7. Lidar Point Cloud of Stenner Road Segment 
	The next chapter describes the process of analyzing these point clouds for cross-slope estimation and then comparing the results from the conventional surveying approaches. 




	Chapter 4: Data Processing and Analyses 
	Chapter 4: Data Processing and Analyses 
	4.1 Introduction 
	4.1 Introduction 
	This Chapter discusses the process of creating the as-built road geometry from the conventional survey data and the 3D point cloud models. Both datasets were then used to create the cross-slope sections and the road profiles. 

	4.2 Surface Modeling 
	4.2 Surface Modeling 
	Conventional survey data were imported into Autodesk Civil 3d (C3D) as an existing ground point group in which the surface was created. Since the cross slope is constant within the travel lane, the survey points were collected at road edges and the center of the road for each section, as a result, the cross-section looks like a normal crown, triangle in shape. 
	The point cloud model was imported as a .las file into Trimble Business Center (TBC) to subsample points and create and surface needed to work in C3D. The point clouds were classified in TBC to extract ground features such as poles, vegetation, and other unknown points. The classification step was run three times to filter out and exclude any potential noise within the point cloud. Once the classification process outcome is satisfactory, the next stage involved using the surface creation tool within TBC to 
	The point cloud model was imported as a .las file into Trimble Business Center (TBC) to subsample points and create and surface needed to work in C3D. The point clouds were classified in TBC to extract ground features such as poles, vegetation, and other unknown points. The classification step was run three times to filter out and exclude any potential noise within the point cloud. Once the classification process outcome is satisfactory, the next stage involved using the surface creation tool within TBC to 
	was exported from TBC as a .xml file and then imported into C3D. The Coordinate Geometry (COGO) points tool with C3D was used to create points from the TBC. COGO points, in addition to coordinate data (x, y, and z), have a variety of properties associated with them, including point number, point name, raw (field) description, and full description. 
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	Figure 8. Roadway surfaces created using LiDAR Scan and Traditional Survey Methods 

	4.3 Profile view and Cross Sections 
	4.3 Profile view and Cross Sections 
	These new Cogo points were created and added to a new surface that would mimic the initial surface, being a three points cross-section but with the elevations collected from the point cloud instead of the conventional survey. Using point on edge of the pavements, defining the boundary of surface, and collected points on the crown helps on triangulation and creating the 3D surface. Then an elevation along a reference line (between two points at same station but on opposite side of the road) resulted in cross
	The point cloud data sets were then imported into Autodesk Civil 3D software. The as-built cross-slop and profile were created from the point clouds as shown in Figure 9. Sample of the Road Cross-Slop Profiles Extracted from the 3D point Cloud model 
	2 and 3. 
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	Figure 9. Sample of the Road Cross-Slop Profiles Extracted from the 3D point Cloud model 
	Figure 9. Sample of the Road Cross-Slop Profiles Extracted from the 3D point Cloud model 
	Artifact
	Figure 10. The road profile Extracted from the 3D point Cloud Model 


	4.4 DATA ANALYSES 
	4.4 DATA ANALYSES 
	4.4.1 Roadway Vertical Profile 
	4.4.1 Roadway Vertical Profile 
	The point elevations obtained from the LiDAR scanning and conventional surveys were used to plot the cross section view of the roadway centerline and edge of travel ways (ETWs) as seen in Figures 4.4 and 4.5. Figure 4.4 shows the comaprison between cross sections generated from data collected by the two survey methods. It is noted, from these plots, that both survey methods resulted in almost identical profiles. 
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	c) Southbound ETW 
	Figure 11. . Comparison of Roadway Profiles Generated from Conventional and LiDAR Surveys for Mt. Bishop Road. 
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	Figure 12. Comparison of Roadway Profiles Generated from Conventional and LiDAR Surveys for Stenner Creek Road 
	Figure 12. Comparison of Roadway Profiles Generated from Conventional and LiDAR Surveys for Stenner Creek Road 
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	4.4.2 Roadway Cross-Slope 
	4.4.2 Roadway Cross-Slope 
	The boxplot of extracted cross slope estimates using conventional surveying and LiDAR data showed no outliers, even as the LiDAR survey had a slightly wider distribution of estimates (Figure 4.6). The Q-Q plots show that both LiDAR and survey data cross slope estimates follow a normal distribution (Figure 4.7). 
	Figure
	Figure 13. Box plot for cross slope estimates using conventional survey and LiDAR survey 
	Figure 13. Box plot for cross slope estimates using conventional survey and LiDAR survey 
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	Figure 14. Normal Q-Q plots of Conventional and LiDAR survey estimates 
	Figure 14. Normal Q-Q plots of Conventional and LiDAR survey estimates 


	One source of error in any surveying data collection is systematic error which is typically due to equipment imperfection. The systematic error magnitude and sign remain the same, which is depicted by a skew in the collected data. Random or accidental errors are due to imperfections in surveyors’ senses, which magnitude and sign could change for each measurement. Based on the Q-Q plots shown in Figure 4.5 for both measurement techniques, we can conclude that the errors follow a normal distribution, and it i
	The use of LiDAR to extract pavement cross slope on the two roadway segments was compared against cross slope measurements collected using conventional surveying for the two road segments. The cross slope typically is a uniform transverse slope from the crown line on each side of the road. Each cross slope for a single travel lane falls within two GPS collected points (i.e. 
	Artifact
	edge of pavement marking and centerline). To extract cross slope at travel lanes a linear regression was used to determine best fitted line between points which represents average cross slope. The use of linear regression to extract cross slope estimates has been used in other LiDAR studies (Shams et al., 2018). 
	The survey data collected using the conventional and LiDAR methods and the comparison between cross slopes are shown in Tables 4.1 and 4.2 for Mt. Bishop and Stennet Creek Roads, respectively. 
	Table 4.1: Comparison of cross slopes from Conventional Survey and LiDAR for Mt. Bishop Rd. 
	Table 3: Comparison of cross slopes from Conventional Survey and LiDAR for Mt. Bishop Rd. 
	Station 
	Station 
	Station 
	Offset, ft 
	Direction 
	Conventional Survey, % 
	LiDAR, % 
	Difference, % 

	1 
	1 
	9.26 
	N. Bound 
	4.43 
	4.54 
	-0.11 

	0.00 
	0.00 

	9.46 
	9.46 
	S. Bound 
	0.95 
	0.63 
	0.32 

	2 
	2 
	9.20 
	N. Bound 
	1.52 
	1.41 
	0.11 

	0.00 
	0.00 

	10.22 
	10.22 
	S. Bound 
	1.47 
	1.37 
	0.10 

	3 
	3 
	9.33 
	N. Bound 
	-0.21 
	-0.32 
	0.11 

	0.00 
	0.00 

	9.03 
	9.03 
	S. Bound 
	1.11 
	0.89 
	0.22 

	4 
	4 
	9.69 
	N. Bound 
	-0.41 
	-0.83 
	0.41 

	0.00 
	0.00 

	8.95 
	8.95 
	S. Bound 
	1.56 
	0.89 
	0.67 

	5 
	5 
	9.95 
	N. Bound 
	-0.20 
	0.00 
	-0.20 

	0.00 
	0.00 

	10.28 
	10.28 
	S. Bound 
	1.56 
	2.14 
	-0.5 
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	6 
	6 
	6 
	9.74 
	N. Bound 
	1.03 
	0.92 
	0.10 

	0.00 
	0.00 

	10.23 
	10.23 
	S. Bound 
	3.81 
	5.1 
	-1.37 

	7 
	7 
	9.39 
	N. Bound 
	-0.32 
	-0.32 
	0.00 

	0.00 
	0.00 

	10.50 
	10.50 
	S. Bound 
	2.29 
	2.95 
	-0.67 

	8 
	8 
	9.85 
	N. Bound 
	0.10 
	-0.71 
	0.81 

	0.00 
	0.00 

	9.63 
	9.63 
	S. Bound 
	2.28 
	1.25 
	1.04 

	9 
	9 
	9.53 
	N. Bound 
	0.42 
	-0.10 
	0.52 

	0.00 
	0.00 

	8.86 
	8.86 
	S. Bound 
	1.69 
	* 
	* 

	10 
	10 
	9.73 
	N. Bound 
	0.82 
	0.31 
	0.51 

	0.00 
	0.00 

	8.92 
	8.92 
	S. Bound 
	1.35 
	0.56 
	0.78 

	11 
	11 
	9.61 
	N. Bound 
	0.31 
	0.00 
	0.31 

	0.00 
	0.00 

	8.76 
	8.76 
	S. Bound 
	1.14 
	0.11 
	1.03 

	12 
	12 
	9.75 
	N. Bound 
	0.10 
	-0.41 
	0.51 

	0.00 
	0.00 

	10.15 
	10.15 
	S. Bound 
	0.20 
	* 
	* 

	13 
	13 
	10.15 
	N. Bound 
	-0.69 
	-0.39 
	-0.30 

	0.00 
	0.00 

	9.43 
	9.43 
	S. Bound 
	0.21 
	-0.42 
	0.64 

	14 
	14 
	10.23 
	N. Bound 
	-0.78% 
	-0.98 
	0.20 

	0.00 
	0.00 

	9.26 
	9.26 
	S. Bound 
	1.30% 
	1.08 
	0.22 


	• Data Not Available 
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	Table 4: Comparison of Cross Slopes from Conventional Survey and LiDAR for Stenner Creek Rd. 
	Station 
	Station 
	Station 
	Offset, ft 
	Direction 
	Conventional Surve, % 
	LiDAR, % 
	Difference, % 

	1 
	1 
	9.23 
	E. Bound 
	-0.98 
	-0.87 
	-0.11 

	0.00 
	0.00 

	8.55 
	8.55 
	W. Bound 
	1.05 
	1.17 
	-0.12 

	2 
	2 
	9.01 
	E. Bound 
	1.00 
	1.00 
	0.00 

	0.00 
	0.00 

	9.41 
	9.41 
	W. Bound 
	2.55 
	2.76 
	-0.21 

	3 
	3 
	8.95 
	E. Bound 
	1.90 
	1.56 
	0.34 

	0.00 
	0.00 

	9.21 
	9.21 
	W. Bound 
	2.50 
	2.39 
	0.11 

	4 
	4 
	8.52 
	E. Bound 
	2.00 
	1.88 
	0.12 

	0.00 
	0.00 

	9.66 
	9.66 
	W. Bound 
	1.76 
	1.86 
	-0.10 

	5 
	5 
	9.84 
	E. Bound 
	1.63 
	1.63 
	0.00 

	0.00 
	0.00 

	8.83 
	8.83 
	W. Bound 
	1.02 
	1.02 
	0.00 

	6 
	6 
	9.23 
	E. Bound 
	3.14 
	3.14 
	0.00 

	0.00 
	0.00 

	8.76 
	8.76 
	W. Bound 
	1.14 
	1.37 
	-0.23 

	7 
	7 
	9.61 
	E. Bound 
	3.12 
	3.12 
	0.00 

	0.00 
	0.00 

	8.20 
	8.20 
	W. Bound 
	2.68 
	2.80 
	-0.12 

	8 
	8 
	8.98 
	E. Bound 
	3.79 
	3.67 
	0.11 

	0.00 
	0.00 

	8.72 
	8.72 
	W. Bound 
	2.64 
	2.64 
	0.00 
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	9 
	9 
	9 
	9.28 
	E. Bound 
	3.02 
	2.91 
	0.11 

	0.00 
	0.00 

	8.51 
	8.51 
	W. Bound 
	3.17 
	3.29 
	-0.12 

	10 
	10 
	9.05 
	E. Bound 
	3.76 
	3.65 
	0.11 

	0.00 
	0.00 

	9.00 
	9.00 
	W. Bound 
	2.44 
	2.56 
	-0.11 

	11 
	11 
	8.88 
	E. Bound 
	3.38 
	3.27 
	0.11 

	0.00 
	0.00 

	8.70 
	8.70 
	W. Bound 
	2.64 
	2.64 
	0.00 

	12 
	12 
	8.32 
	E. Bound 
	3.73 
	3.73 
	0.00 

	0.00 
	0.00 

	9.77 
	9.77 
	W. Bound 
	2.15 
	2.05 
	0.10 

	13 
	13 
	9.09 
	E. Bound 
	2.97 
	2.86 
	0.11 

	0.00 
	0.00 

	8.78 
	8.78 
	W. Bound 
	2.62 
	2.62 
	0.00 

	14 
	14 
	9.09 
	E. Bound 
	3.41 
	3.52 
	-0.11 

	0.00 
	0.00 

	8.83 
	8.83 
	W. Bound 
	1.81 
	1.93 
	-0.12 


	In evaluating the cross slopes at reference station locations, the highest difference between the two measurement techniques was on two Bishop Rd stations, where the slopes measured differed by 1.37% and +1.04%, as shown in Tables 4.1 and 4.2 (with red text highlighting the difference in estimated slope). A p-value of 0.076 for a two-sided paired t-test for conventional surveying and LiDAR data collection indicated that there was no statistical difference between the mean difference of the LiDAR-derived slo
	-

	Artifact
	Table 5. Paired t-test – Comparing mean cross slope between Conventional surveying and LiDAR methods. 
	Table
	TR
	Conventional Surveying 
	LiDAR 

	Mean 
	Mean 
	1.69% 
	1.59% 

	Variance 
	Variance 
	0.02% 
	0.02% 

	Observations 
	Observations 
	54 
	54 

	Pearson Correlation 
	Pearson Correlation 
	0.968587 

	Hypothesized Mean Difference 
	Hypothesized Mean Difference 
	0 

	Df 
	Df 
	53 

	t Stat 
	t Stat 
	1.808572 

	P(T<=t) two-tail 
	P(T<=t) two-tail 
	0.076192 

	t Critical two-tail 
	t Critical two-tail 
	2.005746 


	With regards to the SHRP2 guide specification, a slope tolerance value of ± 0.2% of the design value is deemed acceptable for final measurement after project completion (Hunt et al., 2011). One may observe that, on average, the difference between slope measurements using the two techniques is only 0.097% (1.688-1.591), which is lower than the threshold specified by SHRP2 research. Furthermore, the absolute value of the difference between the estimated slopes using the two methods was less than or equal to 0
	Artifact



	Chapter 5: Conclusion and Recommendations 
	Chapter 5: Conclusion and Recommendations 
	5.1 Summary and Conclusions 
	5.1 Summary and Conclusions 
	Cross slope, the transverse slope with respect to the horizon, is a geometric feature of pavement surfaces, and it is an important safety factor. The inadequate cross slope could lead to several safety issues, including hydroplaning, loss of control, and run-off-road crashes. Traditional surveying is usually applied to evaluate cross slopes and yields highly accurate results but is time-consuming, expensive, and results in worker safety issues. County agencies, in particular, need a more efficient pavement 
	1. 
	1. 
	1. 
	LiDAR technology is an effective alternative for collecting roadway elevation data for cross-slope estimation. 

	2. 
	2. 
	Roadway profiles developed from data collected using conventional, and LiDAR surveys are sufficiently similar even on county-maintained roads that are likely to go through maintenance cycles less frequently than the state DOT-maintained roads. 


	These conclusions point to LiDAR being a viable technology to evaluate cross slopes for roadways with good pavement surface conditions. Furthermore, it appears that the LiDAR point cloud may be able to capture several pavement distress types (observed in Figure 4), and this capability is worth exploring further by the resource-constrained public works departments in local jurisdictions. 
	Artifact

	5.2 Recommendations and Future Scope 
	5.2 Recommendations and Future Scope 
	This research provides a technical evaluation of TLS systems with respect to the accuracy and precision of collected cross-slope data and procedures to collect and process data. The research approach covered various data elements and variables, including profile view, cross-section comparisons, and ground proofing using conventional survey methods. The use of TLS can improve safety in work zones by considerably reducing the time surveyors and other personnel are exposed to risks associated with working clos
	Generally, LiDAR scanning devices can only collect data within line of sight. Therefore, other forms of LiDAR data collection, for example, Mobile Terrestrial Laser Scanning (MTLS), are also recommended. Similar to TLS, MTLS is capable of collecting an entire cross-section, with an exception at steep side slopes. Moreover, a vehicle-mounted LiDAR device can collect data at highway speeds, which increases the time efficiency data collection procedure. 
	The point density (and accuracy) diminishes as distance increases from the LiDAR scanner. Therefore, multiple benchmarks should be used to set up the scanner in order to not exceed the optimum range for data collection. Due to the tremendous number of points within the resultant point cloud, the manual extraction of data is tedious; automating those processes can improve cost-effectiveness. Therefore, automated/semi-automated techniques for filtering, segmentation, and classification of point clouds to extr
	Artifact
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